Update sulle possibilità di immunoterapia di HIV

Immunoterapia di HIV come approccio di cura funzionale?

Giulia Marchetti, MD, PhD

Dip di Scienze della Salute, Università degli Studi di Milano – ASST Santi Paolo e Carlo, Milano

Functional cure – the question(s)

Can we generate HIV-specific immune responses capable of fully contain viral replication even in tissue (sanctuaries) once cART is stopped?

Why is a cure needed?

- HAART does not fully restore health
 - Residual disease (due to inflammation and suboptimal immune restoration) and direct drug toxicity are important contributing factors
- Life-long adherence is often difficult
- A scalable and effective cure could prevent transmission and end the epidemic

Residual disease in ART-treated HIV-infection

Residual HIV disease

Curing HIV infection is a virological AND immunological problem

It is possible that eliminating the "last copy" of HIV in the body will not "cure" the immune dysfunction (inflammation, loss of mucosal integrity, immune senescence, fibrosis, etc.)

Inflammation/immune activation persists on cART

Cannizzo et al. JID 2015; 211(9):1511; see also: Hunt PW, et al. JID 2003

Inflammation causes immune dysfunction

Interventions that reduce inflammation/immune suppression may also be beneficial in containing viral persistence

Immune activation during cART hampers CD4 recovery

Hunt PW, et al. JID 2003

Functional cure: what contribution of immune-based therapy?

Hypothesis #1: reduce immune activation/inflammation

American Journal of Transplantation

Reduction of HIV Persistence Following Transplantation in HIV-Infected Kidney Transplant Recipients

P. G. Stock¹, B. Barin², H. Hatano³, R. L. Rogers¹, M. E. Roland³, T.-H. Lee⁴, M. Busch⁴, and S. G. Deeks^{2,*} for Solid Organ Transplantation in HIV Study Investigators

Sirolimus (rapamycin) which reduces CCR5 expression, T cell activation and T cell proliferation—is associated with low "reservoir" size post-renal transplant

Residual viremia decrease over time is higher in IL-21-treated vs. control RMs (P = 0.03)

Reduction in replicationcompetent virus by IL-21

Micci et al. JCI 2015

IL-21 in the course of cART limits inflammation and HIV persistence

However,

Hypothesis #2: combination strategies

Raise immune response/T-cell homeostasis

Persistent reservoir

Inflammation

Raised circulating interferons in acute HIV

35 acute HIV (sequential plasma samples)

Raised ISG during chronic infection

Jacquelin J Clin Invest 2009

The mixed blessing of interferon HIV-infected monkey: Sandler et al. Nature 2014

A study in monkeys finds that treatment with the protein interferon protects against simian immunodeficiency virus, but that prolonged interferon administration exacerbates the chronic stage of the infection. SEE LETTER P.601

31 JULY 2014 | VOL 511 | NATURE | 537

AMALIO TELENTI

IMMUNOLOGY

An Interferon Paradox

Pamela M. Odorizzi and E. John Wherry

LCMV mouse model: Wilson et al; Tejiaro et al. Science 2013 Interferons must balance antiviral actions against immunosuppressive effects during acute and chronic infections.

SCIENCE VOL 340 12 APRIL 2013

IFN-a + IL-21 maintain low immune activation on cART

Paiardini CROI 2017

IL-21 + IFN-a reduce gut SIV-DNA

Residual disease in ART-treated HIV-infection

Residual HIV disease

Curing HIV infection is a virological AND immunological problem

It is possible that eliminating the "last copy" of HIV in the body will not "cure" the immune dysfunction (inflammation, loss of mucosal integrity, immune senescence, fibrosis, etc.)

Co-inhibitors receptors and HIV

CTLA-4 and PD-1-expressing CD4+ cells significantly contribute to SIV-DNA pool

LN tissues from six HIV-infected individuals: on ART for an average of 37.8 months (range of 20.8-52.3 months), and with undetectable viremia for at least 15.6 months

CTLA-4-pos PD-1-neg are Treg critical for viral persistence and could be target of cure strategies

Any effect for CTLA-4/PD-1 blockade on SIV persistence during ART and after ART stop?

Colon Biopsy

Lewin & Okoye

Functional cure: immune modulants as Latency Reversing Agents (LRA)?

Table 1. Clinical Trials of Latency-Reversing Agents									
	Drug Dosing (doses)	HIV-1 Transcription (fold > baseline)	Plasma HIV-1	Post Dosing Viral Effect	T cell Activation	Reservoir Size	Refs		
Vorinostat									
Archin <i>et al.</i> (2012)	400 mg (1)	4.8	No change	ND ^c	ND	ND	[14]		
Elliott <i>et al.</i> (2014)	400 mg daily (14)	2.7	No change	Yes	No change	No change	[18]		
Archin <i>et al.</i> (2014)	400 mg TIW° (22)	1.3	No change	ND	ND	No change	[15]		
Panobinostat									
Rasmussen et al. (2014)	20 mg TIW (12)	2.9	Increased ^a	Yes	Increased	No change	[17]		
Romidepsin									
Sogaard <i>et al.</i> (2015)	5 mg/m² (3)	3.8	Increased	No	Increased	No change	[19]		
Disulfiram									
Spivak <i>et al.</i> (2014)	500 mg daily (14)	ND	Increased ^b	Yes	ND	No change	[16]		
Elliot et al. (2015)	Dose escalation (3)	~2	Increased	Yes	ND	ND	[20]		

^aDetermined nonquantitatively by nucleic acid testing (NAT) using a transcription-mediated amplification (TMA)-based assay (Prodeix Ultrio Plus®, Novartis).

^bThe subgroup of patients with a measurable metabolite had an increase in low-level viremia.

^cAbbreviations: ND, not determined; TIW, three times a week.

Toll-like receptors (TLRs) agonists

Vesatolimod: A Potent and Selective TLR7 Agonist

Toll-like Receptor 7 (TLR7) Primarily expressed on GS-9620 plasmacytoid DCs and B cells Targeted for HBV and HCV, based on clear antiviral effects of IFN-a Zhang et al., Immunity, 2016 GS-9620 (Vesatolimod) is 30fold selective for TLR7 over TLR8 MYD88 Phase 1 study in HIV+ NFKB IRF7 individuals in progress NEKE IRF Murry et al. CROI 2017 IFN, ISGs Pro-inflammatory

cART-treated patients on viral suppression for >1

year

GS-9620 Induces HIV-specific T-cell

activation/proliferation

- · Significant effects also found in CD4+ T cells, though to a lesser degree
- Activated response to CMV/EBV/Flu/Tetanus also seen

Murry et al. CROI 2017

7

Functional cure: what contribution of therapeutic vaccination?

Therapeutic vaccination: the rationale

- Therapeutic vaccine may help to tackle HIV-1 viral diversity in the viral reservoir driven by HIV immune escape
- combination of vaccine with LRA (kick and kill) or other immunotherapeutic approach could synergistically act to clear HIV reservoir and enhance HIV immunity

Principal therapeutic phase I/II vaccines

Vaccine	Additional description	Phase	Trial Registry Identifier*	Reference
vCP1452	ALVAC-based vaccine	2	NCT00056797	
MRK Ad5 HIV-1 gag	Adenovirus-based vaccine	2	NCT00080106	[56,57]
ISS T-002	HIV Tat-based vaccine	2	NCT00751595	[58,59]
GTU-multiHIV B + LIPO-5	DNA + lipopeptide vaccines	2	NCT01492985	
DermaVir LC002	DNA-based vaccine	1/2	NCT00270205	[60-62]
Synthetic vaccine	HIV Tat-based vaccine	1/2	NCT01793818	
THV01	Lentiviral-based vaccine	1/2	NCT02054286	
DNA-GTU	Plasmid DNA-based vaccine	1/2	NCT02457689	
AGS-004	Patient-derived dendritic cells + HIV antigens	1/2	NCT01069809	
Epimmune	DNA-based vaccine	1	NCT00052182	[64]
rMVA-HIV (env/gag [TBC-M358] + tat/rev/nef [TBC-M335])	Vaccina Ankara-based vaccine	1	NCT00107549	[65]
rFPV-HIV (env/gag [TBC-F357] + tat/rev/nef [TBC-F349])	Fowlpox-based vaccine	1	NCT00107549	[65]
MVA.HIVconsv	MVA-based vaccine	1	NCT01024842	
MAG pDNA + rSVIN HIV-Gag	DNA + VSV-based vaccine	1	NCT01266616	
HIVAX	Lentiviral-based vaccine	1	NCT01428596	
ChAdV63.HIVconsv + MVA.HIVconsv	Adenovirus + MVA-based vaccines	1	NCT01712425	
iHIVARNA-01	TriMix + HIV antigen naked messenger RNA	1	NCT02413645	
D-GPE DNA + M-GPE MVA	DNA and MVA viral vector vaccines	1	NCT01881581	

BCN02- pilot single-arm open lable

HIV+ treated within 3 months from acute infection, fully suppressive cART for 3yrs

- cART interruption 8 weeks after last vaccine boost
- cART re-started if VL>2000

HIVconsv responses were effectively boosted after >2years from 1st CM

 Change in CTL immunodominance pattern towards conserved regions

n=15

Mothe V #119 LB CROI 2017

n=13 Feb 15th

- Up to 3years on cART, continues reduction in levels of proviral DNA.
- No further decrease with RMD.
- At MAP, median (range) of 144 (16-829) copies/10⁶ CD4⁺ T cells
- Detectable in all patients.

13 participants have interrupted cART to date.

n=13 Feb 15th

Mothe V #119 LB CROI 2017

- This is the first therapeutic vaccine trial reporting a durable control of HIV-1 after cART cessation in a substantial proportion of patients (≈35-38%, so far >12-24wks).
- BCN 02 data suggest that viral control can be achieved by an effective redirection of CTL towards conserved regions in the context of a limited viral reservoir.

Science MAAAS

Home	News	Journals	Topics	Careers			
Latest News	ScienceInsider	ScienceShots	Sifter	From the Magazine	About News	Quizzes	

SHARE

in 114

HIV surface proteins (salmon) rapidly mutate to dodge antibodies (lime and blue) so some vaccines direct immune responses to viral pieces that rarely change. Donald Bliss and Sriram Subramaniam/NIH

AIDS vaccine may be 'functional cure' for some

By Jon Cohen | Feb. 22, 2017, 4:45 PM

RESEARCH ARTICLE

HIV-1 THERAPY

Sustained virologic control in SIV⁺ macaques after antiretroviral and $\alpha_4\beta_7$ antibody therapy

Byrareddy et al. Science 2016

cART + 22-week infusion, then stop cART